Abstract

In this paper, some new approaches for stability and stabilizability determination as well as state feedback stabilization controllers of linear time-invariant (LTI) interval systems are proposed. The presented stability conditions are less conservative than those of Kharitonov’s theorem, and Gerschgorin’s disc theorem methods. Moreover, some of the proposed stability, stabilizability, and feedback stabilization control methods for LTI interval systems are proved to be sufficient and necessary conditions. Compared with some traditional stability analysis and feedback stabilization design methods for LTI interval systems, these new approaches have lower computational complexity because of a special form of parameter vertex matrices developed in this work. Some numerical and practical examples are given to demonstrate the effectiveness and advantages of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.