Abstract

In recent studies, it has been verified heuristically and experimentally (via simulations) that instability in power systems due to a fault occurs when one machine or a group of machines, called the critical group, loses synchronism with the remaining machines. Using energy functions associated with a critical group (rather than system-wide energy functions), transient stability results which are less conservative than other existing results, have recently been obtained. The existence and identity of a critical group is ascertained in these studies by off-line simulations. In the present paper, we establish some general stability results for a large class of dynamical systems (which are arrived at via a Lagrange formulation). We then show that our stability results can be used to establish analytically the existence and the identity of the critical group of machines in a power system due to a given fault. The applicability of the present results is demonstrated by means of a specific example (a 162-bus, 17-generator model of the power network of the State of Iowa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.