Abstract
Optimization under uncertainty and risk is ubiquitous in business, engineering, and finance. Typically, we use observed or simulated data in our decision models, which aim to control risk, and result in composite risk functionals. The paper addresses the stability of the decision problems when the composite risk functionals are subjected to measure perturbations at multiple levels of potentially different nature. We analyze data-driven formulations with empirical or smoothing estimators such as kernels or wavelets applied to some or to all functions of the compositions and establish laws of large numbers and consistency of the optimal values and solutions. This is the first study to propose and analyze smoothing in data-driven composite optimization problems. It is shown that kernel-based and wavelet estimation provide less biased estimation of the risk compared with the empirical plug-in estimators under some assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.