Abstract

Liposomes composed of tetraether lipids originating from the thermoacidophilic archaeon Sulfolobus acidocaldarius were analyzed for their stability and proton permeability from 20°C up to 80°C. At room temperature, these liposomes are considerably more stable and have a much lower proton permeability than liposomes composed of diester lipids originating from the mesophilic bacterium Escherichia coli or the thermophilic bacterium Bacillus stearothermophilus. With increasing temperature, the stability decreased and the proton permeability increased for all liposomes. Liposomes composed from tetraether lipids, however, remain the most stable. These data suggest these liposomes retain the rigidity of the cytoplasmic membrane of S. acidocaldarius needed to endure extreme environmental growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.