Abstract

This paper proposes a new preconditioning scheme for a linear system with a saddle-point structure arising from a hybrid approximation scheme on the sphere, an approximation scheme that combines (local) spherical radial basis functions and (global) spherical polynomials. In principle the resulting linear system can be preconditioned by the block-diagonal preconditioner of Murphy, Golub and Wathen. Making use of a recently derived inf–sup condition and the Brezzi stability and convergence theorem for this approximation scheme, we show that in this context the Schur complement in the above preconditioner is spectrally equivalent to a certain non-constant diagonal matrix. Numerical experiments with a non-uniform distribution of data points support the theoretically proved quality of the new preconditioner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.