Abstract

To explore mechanisms governing the formation, stability, and elimination of synapses during neuronal development, we used FM 1-43 fluorescence imaging to track vesicle turnover at >7000 individually identified developing synapses between embryonic rat hippocampal neurons in culture. The majority of presynaptic boutons were stable in efficacy and position over a period of 1.5 hr. Activity, evoked by burst-patterned field stimulation, decreased presynaptic function across the population of boutons, an effect that required NMDA receptor activation. Decreased FM 1-43 staining correlated with low synapsin-I and synaptophysin immunoreactivities, suggesting that decreased presynaptic function was commensurate with synaptic disassembly. These observations provide new information on the stability of developing presynaptic function and suggest that NMDA receptor activation may regulate the stability of developing synapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call