Abstract

This paper is concerned with the analysis of large-scale interconnected systems constructed from positive subsystems and a nonnegative interconnection matrix. We first show that the interconnected system is admissible and stable if and only if a Metzler matrix built from the coefficient matrices of the positive subsystems and the interconnection matrix is Hurwitz stable. By means of this key lemma, we further provide several results that characterize the admissibility and stability of interconnected systems in terms of the weighted L1-induced norm of each positive subsystem and the Frobenius eigenvalue of the interconnection matrix. Moreover, in the case where every subsystem is SISO, we provide explicit conditions under which the interconnected system has the property of persistence, i.e., the state of the interconnected system converges to a unique strictly positive vector (up to a strictly positive constant multiplicative factor) irrespective of nonnegative and nonzero initial states. We illustrate the effectiveness of the persistence results via formation control of multi-agent systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.