Abstract

In this review the rupture and permeability of bilayers are considered on the basis of a mechanism of the formation of microscopic holes as fluctuations in the bilayers. The hole formation is treated as a nucleation process of a new phase in a two-dimensional system with short-range intermolecular forces. Free rupture and deliberate rupture (by α-particles) of foam bilayers (Newtonian black films) are discussed. A comparison is made between the rupture of foam and emulsion bilayers. Experimental methods for obtaining foam and emulsion bilayers from thin liquid films are considered. Methods for investigating the stability and permeability of foam bilayers, which are based on a microscopic model allowing the use of amphiphile solutions with very low concentrations, are described. Experimental dependences of the lifetime of bilayers, the probability of observing the foam bilayer in a foam film, the gas permeability of bilayers, etc. on the concentration of amphiphile molecules in the solution are reported. The influence of temperature and external impact (e.g. α-particle irradiation) have also been experimentally studied. A good agreement between theory and experiment is established, allowing determination of several characteristics of foam and emulsion bilayers obtained from ionics or non-ionics: the specific edge energy of bilayer holes, equilibrium surfactant concentration below which the bilayer is thermodynamically metastable, work for the formation of a nucleus hole, number of vacancies in the nucleus hole, coefficient of gas diffusion through the bilayer, etc. On the basis of the effect of temperature on the rupture of foam bilayers the binding energy of a surfactant molecule in the bilayer is determined. The adsorption isotherm of surfactant vacancies in the foam bilayer is obtained which shows a first-order phase transition. Some applications to scientific, technological and medical problems are considered. The foam bilayer is used as a model for investigating short-range forces in biological structures, the interaction between membranes and cell fusion. It is also shown that the foam bilayer is a suitable model for studying the alveolar surface and stability. On that basis a clinical diagnostic method is developed for assessment of the human foetal lung maturity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call