Abstract

We propose and investigate a delayed model that studies the relationship between HIV and the immune system during the natural course of infection and in the context of antiviral treatment regimes. Sufficient criteria for local asymptotic stability of the infected and viral free equilibria are given. An optimal control problem with time delays both in state variables (incubation delay) and control (pharmacological delay) is then formulated and analyzed, where the objective consists to find the optimal treatment strategy that maximizes the number of uninfected CD4 + T cells as well as cytotoxic T lymphocyte immune response cells, keeping the drug therapy as low as possible. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.