Abstract

The use of a more accurate scheme is effective in reducing the required memory resources in the explicit time-domain simulation of optical field propagation. A promising technique is the application of the symplectic integrator, which can simulate the long-term evolution of a Hamiltonian system accurately. The stability condition and the numerical dispersion of schemes with fourth-order accuracy in time and space using the symplectic integrator are derived for the transverse electric (TE)-mode in two dimensions. Their stable and accurate performance is qualitatively verified, and is also demonstrated by numerical simulations of wave-converging by a perfect electric conductor wall and propagation along a waveguide whose refractive index difference between the core and cladding is more than 9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.