Abstract

Results of systematic study of the stability and nonlinear vibrations of thin cylindrical shells interacting with a fluid flow are presented. The main patterns of dynamical deformation of shells during divergence and flutter are considered. The effect of different structural features (initial geometrical imperfections, added concentrated masses, boundary conditions, longitudinal and transverse static loads) on the critical (divergence and flutter) velocities is analyzed. The amplitude–frequency response of shells to external periodic radial loads and internal periodic pressure caused by small pulsations of the fluid velocity is determined. A method is proposed to solve nonlinear problems describing nonstationary processes of passing resonance zones by shells interacting with the fluid flow

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.