Abstract

Considering the midline non-expansion theory and nonlinear coordinate method, this paper mainly investigates the stability and nonlinear vibration characteristics of cantilevered fluid-conveying pipe with energy sink. Based on Hamilton 's variational principle, the dynamic equation of a cantilevered pipe conveying fluid with nonlinear energy sink (NES) under pulsating flow is established. The system equation is processed by Galerkin method, a novel matrix equations of single-degree-of-freedom and multi-degree-of-freedom coupling system is established. The results show that the physical factors in the flow pipe system have a great influence on the critical flow velocity of the whole system, comparing with the case of adding NES. Increasing the proportion of the mass of the fluid will have a greater impact on the real part frequency, thereby increasing the critical velocity of the fluid-conveying pipe system. Addition of nonlinear energy sink can significantly suppress the amplitude and decrease the unstable vibration of the pipe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.