Abstract

In the present paper, we investigate stability of trajectories of Lotka–Volterra (LV) type operators defined in finite dimensional simplex. We prove that any LV type operator is a surjection of the simplex. It is introduced a new class of LV-type operators, called MLV type ones, and we show that trajectories of the introduced operators converge. Moreover, we show that such kind of operators have totally different behavior than \({\mathbf {f}}\)-monotone LV type operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.