Abstract

Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.PACS7550Mw; 7575Cd; 8185Qr

Highlights

  • The use of nanosized colloids offers exciting new opportunities for biomedical applications as they have the potential to overcome significant limitations associated with therapeutic drugs

  • Moderate surface charge afforded by the zwitterionic but charge-neutral phospholipid assembly resulted in limited colloidal stability, which rapidly led to particle aggregation into the micrometer range [12]

  • Fabrications of lipid-coated Fe3O4 nanoparticles Thermoresponsive, lipid-coated nanoparticles were fabricated by anchoring a phospholipid bilayer to avidincoated Superparamagnetic iron oxide nanoparticles (SPION) via high-affinity biotin interactions

Read more

Summary

Introduction

The use of nanosized colloids offers exciting new opportunities for biomedical applications as they have the potential to overcome significant limitations associated with therapeutic drugs (e.g., physical, chemical, or biochemical instability). The large surface-to-volume ratio of small magnetic nanoparticles increases surface energy and, enhancing particle aggregation. Our laboratory described a novel phospholipid/Fe3O4 nanocomposite designed for stimulus-controlled release of an encapsulated payload via magnetically induced hyperthermia [12]. These results demonstrated the feasibility of immobilizing a 2- to 3-nm-thick layer of 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) on the surface of SPIONs via high affinity avidin/biotin interactions without negatively affecting magnetically induced heating properties. Moderate surface charge (zeta potential −5.0 ± 3.0 mV) afforded by the zwitterionic but charge-neutral phospholipid assembly resulted in limited colloidal stability, which rapidly led to particle aggregation into the micrometer range [12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call