Abstract
In this letter, we present the dc characteristics, stability, and low-frequency noise (LFN) measurements, for n-type indium arsenide nanowire (NW) parallel-array thin-film transistors (TFTs) with a global back gate. These devices perform with mobilities ranging from 200-1200 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> V <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> and produce a threshold voltage shift less than 0.25 V after 10 000 <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</i> of stress. The resulting LFN measurements indicate that the 1/ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> noise can be modeled by the number fluctuation model, at low drain currents, which can provide an essential guideline for the device design considerations of NW TFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.