Abstract

Air temperature (AT) is a subsystem of a complex climate. Long-range correlation (LRC) is an important feature of complexity. Our research attempt to evaluate AT’s complexity differences in different land-use types in the Heihe River Basin (HRB) based on the stability and LRC. The results show the following: (1) AT’s stability presents differences in different land-use types. In agricultural land, there is no obvious variation in the trend throughout the year. Whereas in a desert, the variation in the trend is obvious: the AT is more stable in summer than it is in winter, with Ta ranges of [8, 20]°C and SD of the AT residual ranges of [0.2, 0.7], respectively. Additionally, in mountainous areas, when the altitude is beyond a certain value, AT’s stability changes. (2) AT’s LRC presents differences in different land-use types. In agricultural land, the long-range correlation of AT is the most persistent throughout the year, showing the smallest difference between summer and winter, with the Hs range of [0.8, 1]. Vegetation could be an important factor. In a desert, the long-range correlation of AT is less persistent, showing the greatest difference between summer and winter, with the Hs range of [0.54, 0.96]. Solar insolation could be a dominant factor. In an alpine meadow, the long-range correlation of AT is the least persistent throughout the year, presenting a smaller difference between summer and winter, with the Hs range of [0.6, 0.85]. Altitude could be an important factor. (3) Usually, LRC is a combination of the Ta and SD of the AT residuals. A larger Ta and smaller SD of the AT residual would be conducive to a more persistent LRC, whereas a smaller Ta and larger SD of the AT residual would limit the persistence of LRC. A larger Ta and SD of the AT residual would create persistence to a degree between those of the first two cases, as would a smaller Ta and SD of the AT residual. In addition, the last two cases might show the same LRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.