Abstract

The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.