Abstract

We investigate the role played by density inhomogeneities and dissipation on the final outcome of collapse of a self-gravitating sphere. By imposing a perturbative scheme on the thermodynamical variables and gravitational potentials we track the evolution of the collapse process starting off with an initially static perfect fluid sphere which is shear-free. The collapsing core dissipates energy in the form of a radial heat flux with the exterior spacetime being filled with a superposition of null energy and an anisotropic string distribution. The ensuing dynamical process slowly evolves into a shear-like regime with contributions from the heat flux and density fluctuations. We show that the anisotropy due to the presence of the strings drives the stellar fluid towards instability with this effect being enhanced by the density inhomogeneity. An interesting and novel consequence of this collapse is the earlier formation of the horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.