Abstract
<p style='text-indent:20px;'>The objective of the current paper is to investigate the dynamics of a new bioeconomic predator prey system with only predator's harvesting and Holling type Ⅲ response function. The system is equipped with an algebraic equation because of the economic revenue. We offer a detailed mathematical analysis of the proposed model to illustrate some of the significant results. The boundedness and positivity of solutions for the model are examined. Coexistence equilibria of the bioeconomic system have been thoroughly investigated and the behaviours of the model around them are described by means of qualitative theory of dynamical systems (such as local stability and Hopf bifurcation). The obtained results provide a useful platform to understand the role of the economic revenue <inline-formula><tex-math id="M1">$ v $</tex-math></inline-formula>. We show that a positive equilibrium point is locally asymptotically stable when the profit <inline-formula><tex-math id="M2">$ v $</tex-math></inline-formula> is less than a certain critical value <inline-formula><tex-math id="M3">$ v^{*}_1 $</tex-math></inline-formula>, while a loss of stability by Hopf bifurcation can occur as the profit increases. It is evident from our study that the economic revenue has the capability of making the system stable (survival of all species). Finally, some numerical simulations have been carried out to substantiate the analytical findings.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.