Abstract

In this work, we consider a stage-structured cannibalism model with two delays. One delay characterizes the lag effect of negative feedback of the prey species, the other has the effect of gestation of the adult predator population. Firstly, criteria for the local stability of feasible equilibria are established. Meanwhile, by choosing delay as a bifurcation parameter, the criteria on the existence of Hopf bifurcation are established. Furthermore, by the normal form theory and center manifold theorem, we derive the explicit formulas determining the properties of periodic solutions. Finally, the theoretical results are illustrated by numerical simulations, from which we can see that the predator’s gestation time delay can make the chaotic phenomenon disappear and maintain periodic oscillation, and that a large feedback time delay of prey can make predators extinct and prey form a periodic solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.