Abstract
In this paper, a delayed Cohen–Grossberg neural network with diffusion under homogeneous Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equation, the local stability of the trivial uniform steady state and the existence of Hopf bifurcation at the trivial steady state are established, respectively. By using the normal form theory and the center manifold reduction of partial function differential equations, formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.