Abstract
In this paper, a class of more general viral infection model with delayed non-lytic immune response is proposed based on some important biological meanings. The sufficient criteria for local and global asymptotic stabilities of the viral free equilibrium are given. And the stability and Hopf bifurcation of the infected equilibrium have been studied. Numerical simulations are carried out to explain the mathematical conclusions, and the effects of the birth rate of susceptible T cells and the efficacy of the non-lytic component on the stabilities of the positive equilibrium \(\bar{E}\) are also studied by numerical simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.