Abstract

We propose a simple model of lac operon that describes the expression of B-galactosidase from lac Z gene in Escherichia coli, through the interaction among several identical mRNA. Our goal is to explore the complex dynamics (i.e. the oscillation phenomenon) of this architecture mediated by this interaction. This model was theoretically and numerically investigated using distributed time delay. We considered the average delay as a bifurcation parameter and the nonlinear degradation rate as a control parameter. Sufficient conditions for local stability were gained by using the Routh-Hurwitz criterion in the case of a weak delay kernel. Then we proved that Hopf bifurcation happened and the direction of the periodic solution was determined using multiple time scale technique. Our results suggest that the interaction among several identical mRNA plays the main role in gene regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call