Abstract

In this paper, we construct a discrete time delay Lac operon model with nonlinear degradation rate for mRNA, resulting from the interaction among several identical mRNA pieces. By taking a discrete time delay as bifurcation parameter, we investigate the nonlinear dynamical behaviour arising from the model, using mathematical tools such as stability and bifurcation theory. Firstly, we discuss the existence and uniqueness of the equilibrium for this system and investigate the effect of discrete delay on its dynamical behaviour. Absence or limited delay causes the system to have a stable equilibrium, which changes into a Hopf point producing oscillations if time delay is increased. These sustained oscillation are shown to be present only if the nonlinear degradation rate for mRNA satisfies specific conditions. The direction of the Hopf bifurcation giving rise to such oscillations is also determined, via the use of the so-called multiple time scales technique. Finally, numerical simulations are shown to validate and expand the theoretical analysis. Overall, our findings suggest that the degree of nonlinearity of the model can be used as a control parameter for the stabilisation of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.