Abstract
AbstractIn this paper we make an attempt to study classes of models by using general logics. We do not believe that Lww is always the best logic for analyzing a class of models. Let K be a class of models and L a logic. The main assumptions we make about K and C are that K has the L‐amalgamation property and, later in the paper, that K does not omit L‐types. We show that, if modified suitably, most of the results of stability theory hold in this context. The main difference is that existentially closed models of K play the role that arbitrary models play in traditional stability theory. We prove e. g. a structure theorem for the class of existentially closed models of K assuming that K is a trivial superstable class with ndop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.