Abstract

This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are in- divisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness on metric environments with indivisible projects. To do so, we explore, among other things, the performance of several well-known solutions (such as the Shapley value, the nucleolus, or the Dutta-Ray value) in these environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.