Abstract
The objective of this paper is to study stability and failure of a composite laminate with a centrally placed cutout of various shapes (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) under combined action of uni-axial compression and in-plane shear loads. The FEM formulation based on the first order shear deformation theory and von Karman’s assumptions has been utilized. Newton–Raphson method is used to solve nonlinear algebraic equations. Failure of a lamina is predicted by the 3-D Tsai–Hill criterion whereas the onset of delamination is predicted by the interlaminar failure criterion. The effects of cutout shape, direction of shear load and composite lay-up on buckling and postbuckling responses, failure loads and failure characteristics of the laminate has been discussed. An efficient utilization of material strength is observed in the case of laminate with circular cutout as compared to the laminate with other shaped cutouts. In addition, it is also concluded that although the buckling strength of the (0/90)4s laminate is lower than that of the (+45/−45/0/90)2s and (45/−45)4s laminates, but its strength is increased in the advanced stage of postbuckling deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.