Abstract

The objective of this paper is to study stability and failure of a composite laminate with a centrally placed cutout of various shapes (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) under combined action of uni-axial compression and in-plane shear loads. The FEM formulation based on the first order shear deformation theory and von Karman’s assumptions has been utilized. Newton–Raphson method is used to solve nonlinear algebraic equations. Failure of a lamina is predicted by the 3-D Tsai–Hill criterion whereas the onset of delamination is predicted by the interlaminar failure criterion. The effects of cutout shape, direction of shear load and composite lay-up on buckling and postbuckling responses, failure loads and failure characteristics of the laminate has been discussed. An efficient utilization of material strength is observed in the case of laminate with circular cutout as compared to the laminate with other shaped cutouts. In addition, it is also concluded that although the buckling strength of the (0/90)4s laminate is lower than that of the (+45/−45/0/90)2s and (45/−45)4s laminates, but its strength is increased in the advanced stage of postbuckling deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call