Abstract

By using the continuation theorem of Mawhins coincidence degree theory and constructing a suitable Lyapunov function, some new sufficient conditions are obtained ensuring existence and global asymptotical stability of periodic solution of cellular neural networks with periodic coefficients and delays, which do not require the activation functions to be differentiable and monotone nondecreasing. A numerical example is given to illustrate that the criteria are feasible. These results are helpful to design globally asymptotically stable and periodic oscillatory cellular neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.