Abstract

The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with carefully chosen implicit-explicit (IMEX) Runge--Kutta time discretization up to third order accuracy for solving one-dimensional linear advection-diffusion equations. In the time discretization the advection term is treated explicitly and the diffusion term implicitly. There are three highlights of this work. The first is that we establish an important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient in the LDG methods. The second is that, by aid of the aforementioned relationship and the energy method, we show that the IMEX LDG schemes are unconditionally stable for the linear problems in the sense that the time-step $\tau$ is only required to be upper-bounded by a constant which depends on the ratio of the diffusion and the square of the advection coefficients and is independent...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.