Abstract
Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ3 (111), Σ3 (112), Σ5 (120), and Σ5 (130) GBs, we show that the Σ3 (111) GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ5 (120) GBs, however, are shown to be more stable than the Σ3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Moreover, we find that although containing wrong bonds, the Σ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ3 (112) GBs also having wrong bonds but with longer bond lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.