Abstract

Sphere-patterned ultrathin block copolymer films are potentially interesting for a variety of applications in nanotechnology. We use self-consistent field theory to investigate the elastic response of sphere monolayer films with respect to in-plane shear, in-plane extension, compression deformations, and bending. The relations between the in-plane elastic moduli are roughly compatible with the expectations for two-dimensional elastic systems with hexagonal symmetry, with one notable exception: The pure shear and the simple shear moduli differ from each other by roughly 20%. Even more importantly, the bending constants are found to be negative, indicating that free-standing block copolymer membranes made of only a sphere monolayer are inherently unstable above the glass transition. Our results are discussed in view of the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call