Abstract

Ice loads exerted on the transmission line can increase the probability of conductor breaking, which will lead to the stability failure of transmission towers. In this paper, a transmission tower-line system is established for two towers and three span lines. Then the nonlinear static stability analysis and nonlinear dynamic stability analysis induced by the conductor breaking are carried out to obtain the load versus displacement curves, while studying the failure modes of the transmission tower-line system. Moreover, the ice load and initial eccentricity are considered in the numerical simulation. In addition, a parametric analysis is performed to investigate the influence of span, insulator length and initial tension force on the stability failure of the system. The results show that the dynamic instability will occur earlier than the static instability due to the dynamic impact effect and conductor breaking with ice loads can lead to the progressive collapse of the transmission tower-line system. Finally, the span length has the greatest effect on the response of transmission tower caused by conductor breaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call