Abstract

The stability and dispersion performance of the recently developed Battle-Lemarie multiresolution time-domain schemes is investigated for different stencil sizes. The contribution of wavelets is enhanced and analytical expressions for the maximum allowable time step are derived. It is observed that larger stencils decrease the numerical phase error, making it significantly lower than finite-difference time domain for low and medium discretizations. The addition of wavelets further improves the dispersion performance for discretizations close to the Nyquist limit, though it decreases the value of the maximum time step, guaranteeing the stability of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.