Abstract
Fractional-order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brownian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As magnetic resonance imaging is applied with increasing temporal and spatial resolution, the spin dynamics is being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here, the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments, where processes are often anisotropic. Anomalous diffusion in the human brain using fractional-order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional-order calculus with respect to time and space. However, effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) in both fractional Laplacian and Riesz derivative form is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE in fractional Laplacian form with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE based on the Riesz form, and the stability and convergence of the INM are investigated. We prove that the INM for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.