Abstract
We consider a fully discrete scheme for stochastic Allen-Cahn equation in a multi-dimensional setting. Our method uses a polynomial based spectral method in space, so it does not require the elliptic operator A A and the covariance operator Q Q of noise in the equation commute, and thus successfully alleviates a restriction of Fourier spectral method for stochastic partial differential equations pointed out by Jentzen, Kloeden and Winkel [Ann. Appl. Probab. 21 (2011), pp. 908–950]. The discretization in time is a tamed semi-implicit scheme which treats the nonlinear term explicitly while being unconditionally stable. Under regular assumptions which are usually made for SPDEs, we establish strong convergence rates in the one spatial dimension for our fully discrete scheme. We also present numerical experiments which are consistent with our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.