Abstract
This study presents an intersection of two seemingly separate areas of research frontiers, “prediction and control of thermoacoustic instability” and “stability analysis of neutral-class linear-time-invariant (LTI) and time-delayed systems (TDS)”. The former is a coveted capability which has been elusive to the scientific community over 1½ centuries. Analytical capabilities have been limited due to the complex physics invoking the “combustion” phenomenon. Most available results rely on accumulated empirical knowledge. In this paper we consider a benchmark combustion test platform, which is known as Rijke’s tube. Its representation is simplified to an LTI neutral TDS, stability of which is assessed using a recent mathematical paradigm called the Cluster Treatment of Characteristic Roots (CTCR). CTCR provides a unique non-conservative and exhaustive stability declaration for a Rijke’s tube within the space of its parameters, naturally, under some simplifying assumptions. For those operating conditions which induce instability, we also propose a conventional and simple control strategy which can recover stability. This method is also analyzed using the CTCR paradigm for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.