Abstract

We investigate, both analytically and numerically, the effectiveness of the nonlinear gain to suppress the background instability in bandwidth-limited soliton transmission. Different types of analytical solutions of the complex Ginzburg-Landau equation (CGLE), namely solutions with fixed amplitude and solutions with arbitrary amplitude, are discussed. The conditions for the stable pulse propagation are defined within the domain of validity of the soliton perturbation theory. The CGLE is solved numerically assuming various input waveforms with different phase profiles, amplitudes and durations. Relatively stable pulse propagation can be achieved over long distances by the use of suitable combination of linear and nonlinear gains. For the cubic CGLE, truly stable propagation of arbitrary amplitude solitons can be achieved in a system with purely nonlinear gain. A new soliton compression effect is demonstrated both for fixed- amplitude and for arbitrary-amplitude solitons. This compression can be particularly significant when the system parameters are chosen near the singularity of the fixed- amplitude solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.