Abstract
We investigate experimentally and theoretically the stability and collapse of holes in liquid layers on bounded substrates with various wettabilities. It is shown that for a liquid layer with a thickness of the order of the capillary length, a stable hole exists when the hole diameter is bigger than a critical value $d_{c}$. Consequently, a further increase of the liquid volume causes the hole to collapse. It is found that$d_{c}$increases with the size of the container, but its dependence on the contact angle is very weak. The experimental results are compared with theory, and good agreement is obtained. Moreover, we present investigations of the dynamics of the hole and the evolution of the liquid film profile after the collapse. The diameter of the hole during collapse and the minimum thickness of the liquid film shortly after the collapse obey different power laws with time. Simple theoretical models are developed which indicate that the collapse of the hole is triggered by surface tension and the subsequent closure process results from inertia, whereas the growth of the liquid column after hole closure results from the balance between the capillary force and inertia. Corresponding scaling coefficients are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.