Abstract

Independent component analysis (ICA) neural networks can estimate independent components from the mixed signal. The dynamical behavior of the learning algorithms for ICA neural networks is crucial to effectively apply these networks to practical applications. The paper presents the stability and chaotic dynamical behavior of a class of ICA learning algorithms with constant learning rates. Some invariant sets are obtained so that the non-divergence of these algorithms can be guaranteed. In these invariant sets, the stability and chaotic behaviors are analyzed. The conditions for stability and chaos are derived. Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.