Abstract

We introduce a multiclass single-server queueing system in which the arrival rates depend on the current job in service. The system is characterized by a matrix of arrival rates in lieu of a vector of arrival rates. Our proposed model departs from existing state-dependent queueing models in which the parameters depend primarily on the number of jobs in the system rather than on the job in service. We formulate the queueing model and its corresponding fluid model and proceed to obtain necessary and sufficient conditions for stability via fluid models. Utilizing the natural connection with the multitype Galton–Watson processes, the Laplace–Stieltjes transform of busy periods in the system is given. We conclude with tail asymptotics for the busy period for heavy-tailed service time distributions for the regularly varying case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call