Abstract

We consider a model describing the flow of a fluid inside an elastic tube that is connected to two tanks. We study the linearized system through semigroup theory. Controlling the pressures in the tanks renders a hyperbolic PDE with boundary control. The linearization induces a one-dimensional linear manifold of equilibria; when those are factored out, the corresponding semigroup is exponentially stable. The location of the eigenvalues in dependence on the viscosity is discussed. Exact boundary controllability of the system is achieved by the Riesz basis approach including generalized eigenvectors. A minimal time for controllability is given. The corresponding result for internal distributed control is stated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.