Abstract

We study different families of even periodic solutions in the classical Sitnikov problem that emanate from the circular case as the eccentricity is increased. The families can be classified by the number N of full revolutions of the primaries and labelled by the number of zeroes p of the vertical coordinate of the massless body in half a period. We give a linear stability criterion of these branches depending on even N, based on the sign for the initial slope of the discriminant function for the associated Hill’s equation, in a computable interval of eccentricities. All families for $$N=2$$ are linearly stable for small and computable e. The results show a fundamental symmetry-driven difference between the even and odd N cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.