Abstract

In the paper we present known and new results concerning stability and the Hopf bifurcation for the positive steady state describing a chronic disease in Marchuk's model of an immune system. We describe conditions guaranteeing local stability or instability of this state in a general case and for very strong immune system. We compare these results with the results known in the literature. We show that the positive steady state can be stable only for very specific parameter values. Stability analysis is illustrated by Mikhailov's hodographs and numerical simulations. Conditions for the Hopf bifurcation and stability of arising periodic orbit are also studied. These conditions are checked for arbitrary chosen realistic parameter values. Numerical examples of arising due to the Hopf bifurcation periodic solutions are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.