Abstract

In this paper, a glycolysis model subject to no-flux boundary condition is considered. First, by discussing the corresponding characteristic equation, the stability of constant steady state solution is discussed, and the Turing's instability is shown. Next, based on Lyapunov-Schmidt reduction method and singularity theory, the multiple stationary bifurcations with singularity are analyzed. In particular, under no-flux boundary condition we show the existence of nonconstant steady state solution bifurcating from a double zero eigenvalue, which is always excluded in most existing works. Also, the stability, bifurcation direction and multiplicity of the bifurcation steady state solutions are investigated by the singularity theory. Finally, the theoretical results are confirmed by numerical simulations. It is also shown that there is no Hopf bifurcation on basis of the condition \begin{document}$ (C) $\end{document} .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.