Abstract

We proposed a nutrient‐phytoplankton interaction model with a discrete and distributed time delay to provide a better understanding of phytoplankton growth dynamics and nutrient‐phytoplankton oscillations induced by delay. Standard linear analysis indicated that delay can induce instability of a positive equilibrium via Hopf bifurcation. We derived the conditions guaranteeing the existence of Hopf bifurcation and tracked its direction and the stability of the bifurcating periodic solutions. We also obtained the sufficient conditions for the global asymptotic stability of the unique positive steady state. Numerical analysis in the fully nonlinear regime showed that the stability of the positive equilibrium is sensitive to changes in delay values under select conditions. Numerical results were consistent with results predicted by linear analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.