Abstract
This paper investigates the dynamical behavior of two oscillators with nonlinearity terms, which are coupled with finite delay parameters. Each oscillator is a general class of second-order nonlinear delay-differential equations. The system of delay differential equations is analyzed by reducing the delay equations to a system of ordinary differential equations on a finite-dimensional center manifold, the corresponding to an infinite-dimensional phase space. In addition, the characteristic equation for the linear stability of the trivial equilibrium is completely analyzed and the stability region is illustrated in the parameters space. Our analysis reveals necessary coefficients of the reduced vector field on the center manifold for studying the bifurcations of the trivial equilibrium such as transcritical, pitchfork, and Hopf bifurcation. Finally, we consider the delay-coupled van der Pol equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.