Abstract

Hopf bifurcation occurs in most of dynamics systems when the influence from the past state varies. In modeling population dynamics, it is more reasonable taking into account the time delays. In this paper, a stage-structured predator-prey system with delay is considered. The existence of Hopf bifurcations at the positive equilibrium is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.