Abstract

<abstract><p>In this paper, based on a p53 gene regulatory network regulated by Programmed Cell Death 5(PDCD5), a time delay in transcription and translation of Mdm2 gene expression is introduced into the network, the effects of the time delay on oscillation dynamics of p53 are investigated through stability and bifurcation analyses. The local stability of the positive equilibrium in the network is proved through analyzing the characteristic values of the corresponding linearized systems, which give the conditions on undergoing Hopf bifurcation without and with time delay, respectively. The theoretical results are verified through numerical simulations of time series, characteristic values and potential landscapes. Furthermore, combined effect of time delay and several typical parameters in the network on oscillation dynamics of p53 are explored through two-parameter bifurcation diagrams. The results show p53 reaches a lower stable steady state under smaller PDCD5 level, the production rates of p53 and Mdm2 while reaches a higher stable steady state under these larger ones. But the case is the opposite for the degradation rate of p53. Specially, p53 oscillates at a smaller Mdm2 degradation rate, but a larger one makes p53 reach a low stable steady state. Besides, moderate time delay can make the steady state switch from stable to unstable and induce p53 oscillation for moderate value of these parameters. Theses results reveal that time delay has a significant impact on p53 oscillation and may provide a useful insight into developing anti-cancer therapy.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call