Abstract

We consider the transport of gas in long pipes and pipeline networks for which the dynamics are dominated by friction at the pipe walls. The governing equations can be formulated as an abstract dissipative Hamiltonian system which allows us to derive perturbation bounds via relative energy estimates using a problem adapted nonlinear analysis. As particular consequences of these results, we are able to prove stability estimates with respect to initial conditions and model parameters and we conduct a quantitative asymptotic analysis in the high friction limit. Our results are established first for the flow in a single pipe and we then extend our analysis to pipe networks in the spirit of energy-based port-Hamiltonian modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.